IMMUNITÉ INNÉE

Dr. F. VELGE-ROUSSEL
EA 4245
« CDG »
Immunité innée

- Origine ancienne
- Diversité faible
- > 100 récepteurs (PRRs)
- transmission par les gamètes

Immunité adaptative

- Origine récente
- Diversité forte
- >10^9 récepteurs Ig et T
- Pas de transmission par les gamètes

Macrophages

Défenses

Protéines inflammatoires

Lymphocytes T/B

Expandion clonale

- Recombinaisons somatiques T et B

Ig 10^{14}

TCR 10^{18}
Les différentes étapes de l'infection et de la réponse

- Adhésion à l’épithélium
- Pénétration
- Infection locale
- Transport lymphatique
- Immunité adaptative

I. INNEE
- Flore normale
- Phagocytes
- Peptides antimicrobiens

I. ADAPTATIVE
- Cicatrisation
- Peptides antimicrobiens
- Phagocytes
- Complément
- Phagocytes
- Cytokines
- Phagocytes
- Présentation de l’antigène
- Anticorps
- Activation des macrophages
- Cellules T cytotoxiques
Cinétique de la réponse immunitaire
Figure N°2

Immunité adaptative (réponse lente)

- Lymphocyte T
- Lymphocyte B
- Anticorps
- T CD4+
- T CD8+

Immunité innée (réponse rapide)

- Mastocyte
- Cellule dendritique
- Macrophage
- Lymphocyte Natural Killer
- Complement
- Basophile
- Eosinophile
- Neutrophile
I. Barrières

• Barrières mécaniques
 – peau
 – cheveux
 – mucus

• Barrières physiologiques
 – transpiration
 – larmes
 – salive
 – acide gastrique
 – urine

• Barrières écologiques
lysozyme
dans les larmes et la
diminution
plupart des sécrétions
des particules
germes commensaux
par passage de l’air
dans les cornets
cucus, cils

peau
barrière physique,

acidité gastrique
acides gras

chantement rapide
germes commensaux
du pH

Peptides anti-microbiens

acidité
et flore commensale
flux urinaire
du vagin

germes commensaux
<table>
<thead>
<tr>
<th></th>
<th>Skin</th>
<th>Gut</th>
<th>Lungs</th>
<th>Eyes/nose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>Epithelial cells joined by tight junctions</td>
<td>Longitudinal flow of air or fluid</td>
<td>Movement of mucus by cilia</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>Fatty acids</td>
<td>Low pH</td>
<td>Enzymes (pepsin)</td>
<td>Salivary enzymes (lysozyme)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antibacterial peptides</td>
</tr>
</tbody>
</table>
La lactoferrine

- Protéine chélatrice du fer
- Présente dans le mucus, les larmes, urine, salive
- Clivage de la partie Nter permet de lier le LPS et induire la lyse bactérienne,
- Activité anti-virale
 DNA and RNA viruses sont susceptibles
 CMV, HIV, HSV, HBV, HCV, Rotavirus, Respiratory syncytial virus
- Efficace dans l'infection précoce et peut agir comme inhibiteur de l'entrée virale
- Récepteurs sur le cellule hôte ou par liaison directe sur le virus.

700 AA divisés en deux domaines qui lient chacun un atome de fer
Lysozymes

- Enzyme de 14kDa dirigée comme la paroi bactérienne.
- Très active contre de nombreux Gram-positive
- Autres modes d'action indépendant de l’activité enzymatique (Gram-negative)
 - Activation des autolysines bactériennes
 - Aggrégation des Bacteries
 - Bloquage de l’adhérence bactérienne
 - Inhibition des productions acidès des microorganismes (oral)
Défensines

- Peptides 3-5kDa cationiques
- β-defensines-1, -2, -3, -4 and α-defensine-5.
- Ont des acticités anti-virales
II. RECEPTEURS DE L’IMMUNITÉ INNÉE

- LES PAMPS
- LES PRR
 - Les molécules secrétées
 - Les récepteurs de phagocytose
 - Les TLR
LES PAMPS OU MMAP

- sont non partagés avec leurs hôtes
- sont partagés avec de nombreux pathogènes apparentés
- sont relativement invariants
- sont le plus souvent indispensables à la survie ou au pouvoir infectieux.

exemples :
- la flagelline des flagelles des bactéries
- le petidoglycan des bactéries Gram positives
- le lipopolysaccharide (LPS) des bactéries Gram négatives
- les acides lipotéchoïques
- l'ARN double brin
- l'ADN déméthylé (à la différence des séquences CpG de l'ADN des eucarytotes)
- les peptides formylés possédant une N-formylméthionine (fMLP)
- Récepteurs de reconnaissance des pathogènes
TLRs

• Type I transmembrane proteins, pattern-recognition receptors that recognize pathogen-associated molecular patterns (PAMPS)

• Conserved from plants, insects to humans

• 13 members in mammals: 1-9 mouse & human; 10 human only; 11-13 mouse only

• Extracellular domains: leu-rich repeats

• Cytoplasmic domains related to IL-1 receptor family, called Toll/IL-1 receptor (TIR) domain
Toll-like receptors and recognition of pathogens

Les TLRs: des homodimères et hétérodimères
Molécules impliquées dans les voies de signalisation des TLR

Adaptateurs moléculaires (domaine TIR):

- **MyD88**: utilisé par tous les TLR
- **TRIF = TICAM-1**
- **TIRAP = MAL**
- **TRAM = TICAM-2**

\[\text{Recrutement de combinaisons différentes d'adaptateurs moléculaires}\]

Kinases:

Famille de kinases IRAK (IL-1 Receptor Associated-Kinases): IRAK-1 et IRAK-4
Après phosphorylation, se dissocient des récepteurs et s'associent à TRAF6
Activation de la kinase TAK-1 (TGF Activated Kinase), et activation de NF-kB

- **TOLLIP**: « Toll Interacting Protein »
- **TIRAP**: « Toll/IL-1R domain-containing Adaptor Protein »
- **IRAK**: IL-1R Associated-Kinase; protéine kinase
- **TRAF6**: « TNFReceptor-Associated Factor 6 »
- **JNK**: « c-Jun N terminal Kinase »
- **TAK1**: « TGF Activated Kinase »
PAMP

TLR

Cellule dendritique Macrophage

Cytokines inflammatoires
Chimiokines
IFN de type I

(b)

CpG DNA

TLR9

MyD88

IRAK

TRAF6

IkB

NF-κB

Costimulatory molecule induction
T-cell stimulation

Cytokine induction

TRENDS in Immunology
Les TLR

[Diagram of TLR signaling pathway]

TLR7
TLR9

TLR1
or
TLR6

TLR2

TLR4
MD-2

TLR3

MyD88

IRAK

TRAF6

NEMO/IKKγ
IKKβ
IKKα

NF-κB

NF-κB
(early phase)

NF-κB
(late phase)

TRAM

TRIF

RIP1

TBK1

IKKe/i

NF-κB

IRF-3

IRF-3

IFN-β

Inflammatory cytokines
Fig. 3 MyD88-dependent signaling pathway. A TIR domain-containing adaptor molecule, MyD88, associates with the cytoplasmic TIR domain of TLRs, and recruits IRAK to the receptor upon ligand binding. IRAK then activates TRAF6, leading to the activation of the IκB kinase (IKK) complex consisting of IKKα, IKKβ and NEMO/IKKγ. The IKK complex phosphorylates IκB, resulting in nuclear translocation of NF-κB that induces expression of inflammatory cytokines. TIRAP, a second TIR domain-containing adaptor, is involved in the MyD88-dependent signaling pathway via TLR2 and TLR4.
Fig. 4 MyD88-independent signaling pathway. In TLR3- and TLR4-mediated signaling pathways, activation of IRF-3 and induction of IFN-β are observed in a MyD88-independent manner. A third TIR domain-containing adaptor, TRIF, is essential for the MyD88-independent pathway. Non-typical IKKs, IKKi/IKKe and TBK1, mediate activation of IRF-3 downstream of TRIF. A fourth TIR domain-containing adaptor, TRAM, is specific to the TLR4-mediated MyD88-independent (TRIF-dependent) pathway.
Régulation de la production des IFN de type I par les TLR

MyD88 forme un complexe avec IRF7 et TRAF6 mais pas avec IRF3
Conséquences de l’activation des TLR

Inflammation: Production de cytokines et chimiotaxies pro-inflammatoires TNF-α, IL-6, IL-12 et IL-8

Réponse antivirale: Production d’IFN de type I, IFN-α et IFN-β

Activation de l’immunité adaptative: Production IFN de type I, IL-12, augmentation de l’expression des molécules de co-stimulation (CD80, CD86) et maturation des CPA (rôle important des cellules dendritiques)
Les récepteurs de l’immunité innée
Les récepteurs Nods intracellulaires

Nods : « Nucleotide-binding Oligomerization Domain proteins »
Récemment caractérisés (2002), ils reconnaissent des PAMPs intracellulaires

Structure

NBS: « Nucleotide-binding site »
CARD: « Caspase Activating and Recruitment Domain »

domaine LRR

NBS

domaine CARD

Nod1

Nod2

Nod1 et Nod2 activent NF-κB, après interaction avec la protéine kinase RICK (interaction par les domaines CARD).
Fonction des récepteurs Nods

- Les gènes Nod, comme les TLR sont très anciens (ont été conservés au cours de l’évolution), et sont retrouvés dans des organismes divers incluant les plantes, les insectes et les mammifères.

- Chez l’homme, 8 membres de la famille des protéines NODs ont été identifiés.

- Localisation intracellulaire, dans les cellules épithéliales

- Pour la majorité des récepteurs Nods, les ligands ne sont pas connus.

- Nod1 et Nod2 reconnaissent des motifs de peptidoglycanes (bactéries gram+ pour Nod1 et Gram + et - pour Nod2).
III. Les cellules de l’immunité Innée

A. Phagocytes

- Microbes
- Phagocyte
- Phagocytosis and killing of microbes

B. NK cells

- Virus-infected cell
- NK cell
- Lysis of infected cell
Les cellules de l’immunité innée : phagocytes

Les cellules phagocytaires ou phagocytes comprennent les polynucléaires neutrophiles et les cellules du système monocyte-macrophage.
Macrophages (MQ)

- Sang: appelés monocytes (1-6% PBMC)
- Tissus: appelés macrophages
 - forme mature des monocytes
 - Trouvés dans les tissus comme l’intestin, poumon, foie, et la rate,

Fonctions:
- Recruter autres cellules
- Production cytokines/chimiokines (inflammation)
- Fonction éboueur (scavenger)
- Phagocytose et lyse après que les mécanismes bactéricides soient activés
- CPA
Le macrophage est la cellule la plus importante.
Polynucléaire éosinophile

Cellule granuleuse avec un noyau multilobé, durée de vie assez courte. Représente 50-70% des leucocytes (les + nombreux)

Granulations :
- Granules primaires azurophiles : rôle dans la phagocytose
- Granules secondaires : libération extra-cellulaire de produits antimicrobiens
-- Granules tertiaires : récepteurs impliqués dans la migration et enzymes détruisant la matrice extra-cellulaires
Les cellules NK

- Pas de récepteur T (CD3-)
- Morphologie: Large granular lymphocytes (LGL), 5-15% des cellules mononucléées du sang (3ème lignée lymphoïde)
- Communs avec les lymphocytes T: CD7+, CD2+, CD8+/
- Commun avec les phagocytes: CD16+ (R Fc\gammaIII)
- Spécifique des cellules NK: CD56

90%: lymphocytes NK granuleux CD16++CD56+ sont cytotoxiques
10%: lymphocytes NK agranuleux, CD16+CD56+++ sont sécrétions d’INF\gamma, TNF\alpha et GM-CSF (cytokines immunomodulatrices)

Expriment CD7, CD2, CD56, CD16
Immunité innée = capables sans immunisation préalable et de façon très rapide :
- de cytotoxicité (d’où leur nom de NK)
- de prod° de cytokines/chimiokines recrutant /activant cellules non spécifiques (PN, MΦ) et les LT
Les mastocytes

- Sont trouvés dans les tissus comme la peau, à côté des vaisseaux sanguins.
- Sont activés par liaison de l’Ag à l’IgE, le complexe se fixe sur les FcER présents à sa surface.
- Les mastocytes activés libèrent des substances qui contribuent à l’inflammation comme l’histamine.
- Les mastocytes sont importants dans la réponse allergique mais prennent aussi une part importante dans l’immunité innée.
Les lymphocytes T γδ

• Points communs avec les T$\alpha$$\beta$ (CD4 ou CD8) :
 - production de cytokines / chimiokines
 - cytotoxicité (perforine / granzyme)

• Différences avec les T$\alpha$$\beta$:
 - rares : 1-5% des lymphocytes circulants
 - retrouvées préférentiellement dans peau, intestin, tractus reprod (jusqu’à 50% des T)
 - Pas de restriction au CMH
 - Reconnaissance d’Ag non-protéiques ou protéiques (pouvant être solubles)
 - TCR γδ CD4- CD8- à répertoire restreint !

• Chez l’adulte, 2 sous-types :
 TCR $V_\gamma9V_\delta2$: 70 à 90% des Tγδ du sang périphérique
 TCR $V_\delta1$, couplé à différents V_γ: population majoritaire dans les muqueuses épithéliales et la peau.
Production de cytokines par les macrophages en réponse aux bactéries

APC

IL-1
TNFα
IL-8
IL-6
IL-12

EFFETS LOCAUX
• Active endothélium vasculaire
• Augmente l’accès des cellules effectrices
• Active les lymphocytes

EFFETS SYSTÉMIQUES
• Fièvre
• Production d’IL-6

• Fièvre
• Choc septique

• Fièvre
• Protéines de phase aigüe

• Active les NK
• Induit la différenciation TH1

• Facteur chimiotactique (neutrophiles)
• Active les lymphocytes
• Augmente la production d’anticorps
PRODUCTION OF CYTOKINES AND CHEMOKINES

- CXCL1/GROα
- CXCL5/ENA-78
- CXCL8/IL-8
- CX3CL1/Fractalkine
- Neutrophil

- CXCL9/MIG
- CXCL10/IP-10
- CCL2/MCP-1
- CCL3/MIP-1α
- CCL5/RANTES
- CCL7/MCP-3
- Eosinophils

- CXCL8/IL-8
- CCL3/MIP-1α
- CCL4/MIP-1β
- CCL5/RANTES
- CCL7/MCP-3
- CX3CL1/Fractalkine

- CXCL9/MIG
- CXCL10/IP-10
- CCL2/MCP-1
- CCL3/MIP-1α
- CCL4/MIP-1β
- CCL5/RANTES
- CCL7/MCP-3
- CCL11/Eotaxin

- CCL5/RANTES
- CCL11/Eotaxin
- CCL20/MIP-3α
- CCL22/MDC

- T lymphocytes

- CCL2/MCP-1
- CCL3/MIP-1α
- CCL4/MIP-1β
- CCL5/RANTES
- CCL7/MCP-3

- Dendritic Cell

- Monocyte

Adapted from Message et al. J Leukoc Biol. 2004 75:5-17
VI. Mécanismes de l’immunité innée

• Les interférons
• La lyse par complément
• L’opsonisation-La phagocytose
• La lyse par NK
• Le rôle des LT γ/δ
• L’inflammation
Immunité innée
facteurs solubles

• Interféron
 - Une molécule (cytokine) produite par les cellules infectées et qui permet leur mort par apoptose

• Protéines de la phase aiguë
 - Protéine plasmatique dont la concentration augmente au cours de l’infection et de l’inflammation
 - Elles peuvent être utilisées pour diagnostiquer une inflammation aiguë
Les IFNs

<table>
<thead>
<tr>
<th>Interféron</th>
<th>Type I : α/ β</th>
<th>Type II : γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>1 chaîne AA</td>
<td>2 chaînes associées AA</td>
</tr>
<tr>
<td>Production</td>
<td>α : leucocytaires β : fibroblastes Cellules infectées</td>
<td>γ : Lymphocytes T activés et cellules NK</td>
</tr>
<tr>
<td>Induction</td>
<td>Virus</td>
<td>Antigène</td>
</tr>
<tr>
<td>Effets</td>
<td>Antiviral</td>
<td>Immunomodulateur</td>
</tr>
</tbody>
</table>
Phase 1 - induction IFN
Mode d'action des IFN

interferon-alpha, interferon-beta

interferon receptor

induction of 2'5'oligo A synthase

ds RNA

activated 2'5'oligo A synthase

ATP

2'5'oligo A

induction of ribonuclease L

2'5'oligo A

activated ribonuclease L

induction of a protein kinase

ds RNA

activated protein kinase

ATP

Phosphorylated initiation factor (eIF-2)

mRNA degraded

inhibition of protein synthesis
Biological Activities of IFN

- Inhibition of viral replication
 - PKR
- Inhibition of cell growth
 - Apoptosis
- Regulation of cell differentiation
- Activation of Immune System
 - Induction des MHC
 - Maturation des cellules dendritiques
Le complément

Unités de reconnaissance

- CLASSICAL PATHWAY
 - Antigen:antibody complexes (pathogen surfaces)
 - C1q, C1r, C1s, C4, C2

- MB-LECTIN PATHWAY
 - Mannose-binding lectin binds mannose on pathogen surfaces
 - MBL, MASP-1, MASP-2, C4, C2

- ALTERNATIVE PATHWAY
 - Pathogen surfaces
 - C3, B, D

C3 convertase

Unités effectrices

- C3a, C5a
 - Peptide mediators of inflammation, phagocyte recruitment

- C3b
 - Binds to complement receptors on phagocytes
 - Opsonization of pathogens
 - Removal of immune complexes

- Terminal complement components
 - C5b, C6, C7, C8, C9

- Membrane-attack complex, lysis of certain pathogens and cells

Figure 2-19 part 1 of 2 Immunobiology, 6/e (© Garland Science 2005)
ANTIBODIES AND PATHOGENS ACTIVATE COMPLEMENT

PATH

IgM > IgG

BIND AND ACTIVATE C1

ACTIVATE C3

OPSONIZATION OF PATHOGENS BY NEUTROPHILS AND MACROPHAGES

C3a

INFLAMMATORY REACTION

C5a

ACTIVATE C5

ACTIVATE C6-C9

LYSIS OF PATHOGENS
Mécanismes de l’immunité Innée

Innate Immune Recognition

Microbial Nonself
- Macrophages

Missing Self
- Natural Killer Cells
phagocytose

(A) Microbes bind to phagocyte receptors

(B) Phagocyte membrane zips up around microbe

(C) Microbe ingested in phagosome

(D) Lysosome fuses with phagosome, killing microbe

Microbe opsonized with antibody Mannose receptor Mac-1 integrin Scavenger receptor

Fc receptor Lysosome

Phagosome

Killing of microbes

From Abbas, Lichtman, & Pober: Cellular and Molecular Immunology. W.B. Saunders, 1999, Fig. 12-4
Bactéricidie

Killing of microbes by lysosomal enzymes in phagolysosomes

Killing of extracellular microbes

Killing of phagocytosed microbes by ROIs and NO

Lysosomes with enzymes

Phagosome with ingested microbes

Phagocyte oxidase

O_2

ROIs

NO

Arginine

iNOS
1. La lyse directe par les NK
L’ADCC : cytotoxicité cellulaire dépendante des Ac

- La cible est reconnue par Ac
- Complexe cellule cible / Ac reconnu via partie Fc par un Fc-R de la NK (FcγR-III=CD16)
- Déclenchement de la lyse / dégranulation
Le TCR γδ a deux grands types de ligands :
- les répandus, exprimés constitutivement par les pathogènes (phosphoAg)
- les inductibles ou restreints à certains types cellulaires (molécules de stress, MICA)
 Médiateurs de l’inflammation:

Chimiokines: Petits polypeptides, contrôlent la migration cellulaire (chimiotactisme)

Médiateurs enzymatiques du plasma: 4 systèmes interconnectés

1. Système des kinines --> bradykinine
2. Système de la coagulation sanguine --> fibrinopeptides
 \[\text{perméabilité vasculaire} \]
 \[\text{douleur} \]
 \[\text{chimiotaxie des PN} \]
3. Système fibrinolytique --> plasmine --> activation du complément
4. Système du complément

Lipides médiateurs de l’inflammation:
PAF, prostaglandines, thromboxanes, leucotriènes

Cytokines médiatrices de l’inflammation: IL-1, IL-6, IL-12, TNF-α
Réponse inflammatoire
Fonctions de l’immunité innée
IV. REGULATION

- Compartimentalisation
- Expression des TLR sur différentes cellules
- Activation de voies inhibitrices (PPAR)
- Régulation propre à chaque mécanisme effecteur
Immunité Innée

- Codage germinal
- Non clonale
- PAMPS
- « Parfaite » sélection au cours de l’évolution
- Action immédiate
 - phagocytose, C- , ..
- Codage germinal

Immunité Adaptative

- récepteurs
- Distribution
- Reconnaissance
 - Discrimination soi/non soi
- effecteurs
- Réponse induite
 - Mémoire

Métazoaires

Vertébrés

- Recombinaison V,D,J
- Clonale
- Epitope
- « imparfaite »
- Action après délai
 - CTL, AC
- Expansion clonale T, B
- Oui